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Abstract

This paper presents an adaptive mesh redistribution (AMR) method for solving the nonlinear Hamilton–Jacobi

equations and level-set equations in two- and three-dimensions. Our approach includes two key ingredients: a non-

conservative second-order interpolation on the updated adaptive grids, and a class of monitor functions (or indicators)

suitable for the Hamilton–Jacobi problems. The proposed adaptive mesh methods transform a uniform mesh in the

logical domain to cluster grid points at the regions of the physical domain where the solution or its derivative is singular

or nearly singular. Moreover, the formal second-order rate of convergence is preserved for the proposed AMR

methods. Extensive numerical experiments are performed to demonstrate the efficiency and robustness of the proposed

adaptive mesh algorithm.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hamilton–Jacobi (H–J) equations are of practical importance with applications ranging from mathe-

matical finance and differential games to front propagation and image enhancement. For this reason, there

have been many theoretical and numerical studies for the H–J equations in the past two decades. Solutions

of H–J equations are continuous and, in the generic case, form discontinuous derivatives in a finite time

even with smooth initial data. This also introduces great difficulties in obtaining numerical solutions of the

H–J equations. Traditional high-order methods are unsuitable, because spurious oscillations will generally
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occur in the presence of the discontinuous derivatives. Hence, some modern numerical techniques such as

ENO schemes and central schemes have been proposed and studied [14,17,18,26,27].

Consider the Hamilton–Jacobi (H–J) equation

/t þ Hðx; t;/x1 ; . . . ;/xd Þ ¼ 0; ð1:1Þ

where x ¼ ðx1; . . . ; xdÞ 2 Rd ; t > 0. The definition of the viscosity solutions and the question of well-po-

sedness were formulated and systematically studied by Crandall, Evans, Lions and many others, see e.g.

[6,8,9]. In [9], Crandall and Lions studied the convergence of monotone finite difference schemes to the

viscosity solutions of (1.1). Unfortunately, monotone schemes are at most first-order accurate, measured by

local truncation errors in smooth regions of the solution. Some rigorous analysis on convergence rate for

hyperbolic conservation laws and Hamilton–Jacobi equations can be found in [15,19,28,32,34]. Typically,

there is a close relation between the H–J equations and hyperbolic conservation laws, and as a result

concepts used for the conservation laws can be passed to the H–J equations. High resolution methods for
solving the conservation laws and the H–J equations include high-order essentially nonoscillatory (ENO)

schemes introduced by Osher and Sethian [26] and Osher and Shu [27]; weighted ENO schemes developed

by Liu et al. [21], Jiang and Shu [14], and Jiang and Peng [13]; and the central high resolution schemes

proposed by Kurganov and Tadmor [18] and Lin and Tadmor [24,25]. Jin and Xin [16] investigated the

numerical passage of relaxation approximation for conservation laws to the H–J equations.

In the traditional way, numerical methods are applied with fixed, pre-assigned grids. In this case, higher-

order (3rd, 4th or even higher) numerical schemes have to be developed in order to enhance the resolution

of the numerical approximations. For unstructured meshes, high-order algorithms for H–J equations are
relatively few. Abgrall [1] extended the monotone-type finite volume schemes to first-order H–J equations

on triangular meshes. High-order approximation on triangular meshes is developed by Augoula and Ab-

grall [2]. In a recent work of Zhang and Shu [37], high-order WENO schemes for solving the nonlinear H–J

equations on two-dimensional unstructured meshes are developed.

It is expected that lower-order scheme (which may be rather simple) can also produce high resolution

with small number of grid points if grid adaptation is employed. To fulfill this purpose, it is desirable to

develop efficient adaptive mesh redistribution (AMR) algorithms to solve the nonlinear H–J equation (1.1).

It is a challenging problem to generate an effective moving mesh in two or more dimensions, especially when
the underlying solution develops complicated structures and becomes singular or nearly singular. Several

AMR techniques have been introduced based on solving elliptic PDEs first proposed by Winslow [36].

Winslow�s formulation requires the solution of a nonlinear, Poisson-like equation to generate a mapping
from a regular domain in a parameter space to an irregularly shaped domain in physical space. By con-

necting points in the physical space corresponding to discrete points in the parameter space, the physical

domain can be covered with a mesh suitable for the solution of finite difference/element equations. Typi-

cally, the map transforms a uniform mesh in the logical domain to cluster grid points at the regions of the

physical domain where the solution or its derivative has the largest gradients. Brackbill and Saltzman [5]
generalize Winslow�s method to produce satisfactory mesh concentration while maintaining relatively good
smoothness and orthogonality. Their approach has become one of the most popular methods used for mesh

generation and adaptation.

There are several difficulties in designing AMR schemes for solving the H–J equations. We list two major

ones below. The first one is concerned with the monitor function, which in general is an indicator of the

degree of singularity. In solving hyperbolic system of conservation laws with an AMR method, it is known

that the gradient-based monitor can be employed, see e.g. [3,22,30]. Since there is a close relation between

the hyperbolic system of conservation laws and the H–J equations, it is expected that the relation can be
also incorporated into the monitor functions for the AMR methods to the H–J problems. The second issue

is about interpolating numerical approximations on the updated adaptive grids. In solving the hyperbolic
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system of conservation laws, a conservative-type interpolation seems crucial, due to the corresponding

properties of the conservation laws. In the case of the H–J equations, this property seems only necessary for

the derivative /x (or rx/), but not for the solution / itself. The interpolation step and the PDE time-

evolution should be well connected so that the (formal) higher-rate of convergence can be preserved.

Our first step is to solve the H–J equations in one- and two-space dimensions. After this is being done,

the extension to 3D will be considered. The extension of an AMR method to 3D computations is always

non-trivial. To our knowledge, successful 3D AMR algorithms are very few. In a recent work [23], we were

able to carry out some 3D simulations for some simple nonlinear problems (one scalar and one system).
However, much efforts have to be made in order to solve 3D hyperbolic problems or H–J equations with an

adaptive mesh strategy.

The organization of this paper is as follows. The moving mesh algorithm is described in Section 2.

Sections 3–5 contain numerical experiments in 1D, 2D and 3D, respectively. The numerical experiments will

demonstrate the efficiency and robustness of the proposed AMR algorithms. Concluding remarks are given

in Section 6.

2. Numerical scheme

The basic idea of our AMR algorithm can be summarized as the following:

Algorithm 1 (Basic AMR procedure for H–J equations).
1. Suppose a logically rectangular spatial grid is given on which the approximation to the H–J solutions

on cell-vertex lives.

2. Update the grid by iterating an elliptic grid generator. Simultaneously update the approximate solu-

tion / on the new grid by using a non-conservative second-order interpolation formula.

3. Update / with a physical time Dt by solving the given PDE in the computational domain.

There are two main differences between the approach in this work and the one in [33] where adaptive

solutions for the hyperbolic conservation laws are sought. The first difference is about Step 2 above. This

step should be regarded as mesh redistribution together with a solution redistribution by interpolating

the approximate solution on the evolving grid. In [33], the interpolation is a conservative one, but for
the H–J equations we will solve a discrete H–J type equation to realize the solution redistribution. The

second difference is about Step 3 above. In [33], this step is done on the new physical grid, but for the

H–J equations we will do it in the fixed logical domain. The approach in [33] can clearly preserve

the conservative properties of the hyperbolic conservation laws (and the Lax–Wendroff weak-solution

result holds for the underlying moving mesh solution). However, there is no direct conservation prop-

erties involved for the H–J equations (1.1), and hence accuracy of the numerical solutions is the major

issue under consideration. This is similar to 2D incompressible Navier–Stokes problems. If one employs

the Navier–Stokes equations in terms of the primitive variables, then the solution accuracy and the
satisfaction of the divergence-free restrictions are both important in designing a numerical scheme.

However, if the stream-function is introduced, then the solution accuracy (and also efficiency) becomes

the most important issue.

2.1. A simple PDE solver

In this subsection, we will describe Step 3 above, namely the numerical discretization for the H–J

equation (1.1) in the logical domain. The mesh motion and solution interpolation parts will be provided in

the next subsection.
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2.1.1. 1D case

Consider the following 1D Hamilton–Jacobi equation

/t þ Hð/xÞ ¼ 0; a < x < b: ð2:1Þ

Assume that there exists a one-to-one coordinate transformation x ¼ xðnÞ from the logical domain

Xc ¼ ½0; 1� to the physical domain Xp ¼ ½a; b�. We also assume that the logical domain Xc is covered by a

uniform mesh nj ¼ jDn, 06 j6N þ 1, where Dn ¼ 1=ðN þ 1Þ. With these assumptions, the 1D H–J

equation (2.1) becomes

/t þ eHH ð/nÞ ¼ 0; 0 < n < 1; ð2:2Þ

where eHH ð/nÞ 	 Hðnx/nÞ. On the computational domain Xc, the above equation can be discretized by the

following numerical scheme:

/nþ1
j ¼ /n

j 
 Dtn eHH 1

2
ðuþj

�
þ u
j Þ

�
þ Dtn

2
Aðuþj ; u
j Þ � ðuþj 
 u
j Þ; ð2:3Þ

where

u�j :¼ D�n /n
j ¼ �ð/

n
j�1 
 /n

j Þ=Dn;

Aðuþ; u
Þ ¼ max
u2Iðu
 ;uþÞ

fj eHHujg:

Here Iðu
; uþÞ ¼ ½minfu
; uþg;maxfu
; uþg�, and eHHu stands for the derivative of eHH ðuÞ with respect to u.
The above scheme is also regarded as the local Lax–Friedrichs (LxF) scheme, which is formally of first-

order accuracy in time and space. To improve its accuracy, the TVD-type high-order Runge–Kutta method

of Shu and Osher [31] will be employed to replace the explicit Euler part in (2.3), and the initial value

reconstruction technique of van Leer [35] will be used to approximate the initial function. For example, let
ujþ1

2
¼ ð/jþ1 
 /jÞ=Dn, which can be regarded as the cell average of /n. Using this notation, a piecewise

linear function can be constructed

ujþ1
2
ðnÞ ¼ ujþ1

2
þ Sjþ1

2
ðn
 njþ1

2
Þ; n 2 ðnj; njþ1�; ð2:4Þ

where Sjþ1
2
is an approximate slope of u with respect to n, and is defined according to van Leer�s limiter [35].

Similar order-enhancing strategy can be also used in multi-dimensional computations.

Remark. When xjþ1 
 xj 	 const:, the above 1D scheme is identical to the conventional local LxF scheme

for the Hamilton–Jacobi equation [31].

Lemma 2.1. The numerical scheme (2.3) is conservative in terms of /x and that the related numerical
Hamiltonian is monotone.

Proof. It follows easily from (2.3) that

/nþ1
j ¼ /n

j 
 Dtn �HHn
j ; ð2:5Þ

where

�HHj :¼ eHH 1

2
ðuþj

�
þ u
j Þ

�
þ 1
2
Aðuþj ; u
j Þ � ðuþj 
 u
j Þ:
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Let vjþ1
2
be the cell average of /x

vjþ1
2
:¼ 1

xjþ1 
 xj

Z xjþ1

xj

/x dx ¼
/jþ1 
 /j

xjþ1 
 xj
: ð2:6Þ

It follows from (2.5) that

vnþ1
jþ1

2

¼ vnjþ1
2

 Dtn

Dxn
jþ1

2

�HHn
jþ1

�

 �HHn

j

�
; ð2:7Þ

where Dxjþ1
2
¼ xjþ1 
 xj . The numerical flux above can be rewritten in the following form (in terms of vjþ1

2
):

�HHn
j ¼ H

Dxn
jþ1

2

vn
jþ1

2

Dxn
jþ1

2

þ Dxn
j
1

2

 
þ

Dxn
j
1

2

vn
j
1

2

Dxn
jþ1

2

þ Dxn
j
1

2

!
þ 1
2
A Dxnjþ1

2
vnjþ1

2
;Dxnj
1

2
vnj
1

2

� �
� Dxnjþ1

2
vnjþ1

2

�

 Dxnj
1

2
vnj
1

2

�
; ð2:8Þ

where H is the original Hamiltonian given in (2.1). It is seen that the difference equation (2.7) is a con-

servative approximation to the conservation laws vt þ HðvÞx ¼ 0. Moreover, it follows from (2.8) that the

numerical Hamiltonian �HH is monotone. �

2.1.2. 2D case

Consider the 2D H–J equation:

/t þ Hð/x;/yÞ ¼ 0; ðx; yÞ 2 Xp � R2: ð2:9Þ

Again assume that there exists a one-to-one coordinate transformation x ¼ xðn; gÞ; y ¼ yðn; gÞ from the

logical domain Xc ¼ ½0; 1�2 to the physical domain Xp. Moreover, the logical domain is covered by a fixed

uniform mesh given by ni ¼ iDn; gj ¼ jDg, 06 i6Nn þ 1; 06 j6Ng þ 1, and Dn ¼ 1=ðNn þ 1Þ;Dg ¼ 1=ðNg

þ 1Þ. After using the coordinate transformation, the 2D H–J equation becomes

/t þ eHH ð/n;/gÞ ¼ 0; 0 < n; g < 1; ð2:10Þ

where eHH ð/n;/gÞ 	 Hðnx/n þ gx/g; ny/n þ gy/gÞ. The two-dimensional version of the local Lax–Friedrichs
(LxF) scheme for the above H–J equation on the logical domain Xc can be written as

/nþ1
i;j ¼ /n

i;j 
 Dtn eHH 1

2
ðuþi;j

�
þ u
i;jÞ;

1

2
ðvþi;j þ v
i;jÞ

�
þ Dtn

2
Aðu�i;j; v�i;jÞ � ðuþi;j 
 u
i;jÞ þ

Dtn
2

Bðu�i;j; v�i;jÞ

� ðvþi;j 
 v
i;jÞ ð2:11Þ

where

u�i;j :¼ D�n /n
i;j; v�i;j :¼ D�g /n

i;j;

Aðu�; v�Þ ¼ maxfj eHH1ðu; vÞj u 2 Iðu
; uþÞ; v 2 ½C;D�j g;
Bðu�; v�Þ ¼ maxfj eHH2ðu; vÞj v 2 Iðv
; vþÞ; u 2 ½A;B�j g:

In the above, eHH1 ¼ nxH1 þ nyH2; eHH2 ¼ gxH1 þ gyH2, where H1 and H2 are the partial derivatives of H with

respect to /x and /y , respectively, or the Lipschitz constants of H with respect to /x and /y , if H is not

differentiable. ½A;B� is the value range for ð/nÞi, and ½C;D� is the value range for ð/gÞj, over 06 i6Nn and

06 j6Ng .
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2.1.3. 3D case

Consider the 3D H–J equation

/t þ Hð/x;/y ;/zÞ ¼ 0; ðx; y; zÞ 2 Xp � R3: ð2:12Þ

After using a coordinate transformation x ¼ xðn; g; fÞ; y ¼ yðn; g; fÞ; z ¼ zðn; g; fÞ from the logical do-

main Xc ¼ ½0; 1�3 to the physical domain Xp, we have

/t þ eHH ð/n;/g;/fÞ ¼ 0; ðn; g; fÞ 2 Xc; ð2:13Þ

where eHH ð/n;/g;/fÞ 	 Hðnx/n þ gx/g þ fx/f; ny/n þ gy/g þ fy/f; nz/n þ gz/g þ fz/fÞ: The 3D version of

the local LxF scheme for the H–J equation (2.13) is of the form

/nþ1
i;j;k ¼ /n

i;j;k 
 Dtn eHH 1

2
ðuþi;j;k

�
þ u
i;j;kÞ;

1

2
ðvþi;j;k þ v
i;j;kÞ;

1

2
ðwþi;j;k þ w
i;j;kÞ

�
þ Dtn

2
Aðu�i;j;k; v�i;j;k;w�i;j;kÞ

� ðuþi;j;k 
 u
i;j;kÞ þ
Dtn
2

Bðu�i;j;k; v�i;j;k;w�i;j;kÞ � ðvþi;j;k 
 v
i;j;kÞ þ
Dtn
2

Cðu�i;j;k; v�i;j;k;w�i;j;kÞ � ðwþi;j;k 
 w
i;j;kÞ;

ð2:14Þ

where

u�i;j;k :¼ D�n /n
i;j;k; v�i;j;k :¼ D�g /n

i;j;k; w�i;j;k :¼ D�f /n
i;j;k;

Aðu�; v�;w�Þ ¼ maxfj eHH1ðu; v;wÞj u 2 Iðu
; uþÞ; v 2 ½C;D�;w 2 ½E; F �j g;
Bðu�; v�;w�Þ ¼ maxfj eHH2ðu; v;wÞj v 2 Iðv
; vþÞ; u 2 ½A;B�;w 2 ½E; F �j g;
Cðu�; v�;w�Þ ¼ maxfj eHH3ðu; v;wÞj w 2 Iðw
;wþÞ; u 2 ½A;B�; v 2 ½C;D�j g:

In the 3D case, eHH1 ¼ rn �H; eHH2 ¼ rg �H and eHH3 ¼ rf �H, where r ¼ ðox; oy ; ozÞT, H ¼ ðH1;H2;H3ÞT.
Here H1;H2; ½A;B� and ½C;D� are similar to that in 2D, and H3 stands for the partial derivative for H with

respect to /z, and ½E; F � is the value range for ð/fÞk.

2.1.4. Time-discretization

By letting the time steps go to zero in (2.3), (2.11) or (2.14), we obtain a semi-discretized numerical
scheme which leads to a system of ODEs. The ODE system can be solved by using the Runge–Kutta

scheme of Shu and Osher [31]. More precisely, we solve

U0ðtÞ ¼ LðUÞ; ð2:15Þ

with a third-order TVD (total variation non-increasing) Runge–Kutta scheme:

Uð1Þ ¼ Un þ DtLðUnÞ;

Uð2Þ ¼ 3

4
Un þ 1

4
Uð1Þ
	

þ DtLðUð1ÞÞ


;

Unþ1 ¼ 1

3
Un þ 2

3
Uð2Þ
	

þ DtLðUð2ÞÞ


:
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2.2. Mesh motion

In this subsection, we describe Step 2 in Algorithm 1. In Tang and Tang [33], an adaptive mesh redis-

tribution method based on the values of the cell average is proposed, resulting in a conservative interpo-

lation scheme. Since there is no explicit conservation requirements for /, we will design a new interpolation

strategy which is in general non-conservative for /, but conservative with respect to its gradient. Moreover,

this interpolation formula will be of second-order accuracy and is governed by a discrete Hamilton–Jacobi

equation which can be handled in the same way as described in the last subsection.

2.2.1. Mesh motion based on Gauss–Seidal iteration

For simplicity, we mainly illustrate the idea of the grid motion for 1D case. The extension to higher

dimensions is straightforward, see [33]. Let x and n be the physical and computational coordinates, re-

spectively, which are (without loss of generality) assumed to be in ½a; b� and ½0; 1�, respectively. A one-to-one

coordinate transformation between these domains is denoted by

x ¼ xðnÞ; n 2 ½0; 1�;
xð0Þ ¼ a; xð1Þ ¼ b:

ð2:16Þ

We use the conventional 1D equidistribution principle:

x
o

on
xðnÞ ¼ Const: ð2:17Þ

or equivalently

o

on
x

o

on
xðnÞ

� �
¼ 0; ð2:18Þ

where x is the monitor function, which in general depends on the underlying solution to be adapted.

Solving (2.18) with the given boundary conditions leads to the desired mesh map x ¼ xðnÞ.
For convenience, assume a (fixed) uniform mesh on the computational domain is given by

nj ¼ j=ðN þ 1Þ; j ¼ 0; 1; . . . ;N þ 1:

In practice, the monitor function x is always associated with the underlying solution / or/and its de-

rivatives, but without loss of generality we assume that x ¼ xð/Þ. For monitor functions involving de-
rivatives, central differencing will be used to approximate these derivatives. Then the moving mesh equation

(2.18) can be discretized by using central difference approximations:

xð/jþ1
2
Þðxjþ1 
 xjÞ 
 xð/j
1

2
Þðxj 
 xj
1Þ ¼ 0; 16 j6N ; ð2:19Þ

where /j�1
2
are some averages based on the /j�1 and /j. Solving (2.19) with the boundary conditions

xð0Þ ¼ a and xð1Þ ¼ b gives a new grid partition, fexxjg, in the physical domain. In our computations, we
solve (2.19) by a Gauss–Seidal (GS) iteration

xð/½m�
jþ1

2

Þ x½m�jþ1
�


 x½mþ1�j

�

 xð/½m�

j
1
2

Þ x½mþ1�j

�

 x½mþ1�j
1

�
¼ 0: ð2:20Þ

Once one loop of the above GS iteration is finished, the numerical approximation f/½m�j g will be updated
by a non-conservative formula to be provided below. When the updated approximation f/½mþ1�j g is ob-
tained, the GS iteration (2.20) can be employed again to improve the quality of the mesh fxjg. This leads to
an iteration procedure on the grid motion and solution-interpolation. The iteration determines progres-

sively better values of the new grid locations and the approximation values. The total iteration is continued
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until there is no significant change in calculated new grids from one iteration to the next. Typically about 3

to 5 cycles of GS iteration are required, so in most computations in this work we use 5 GS iterations at each

time level.

In the practical computations, it is common to use some temporal or spatial smoothing on the monitor

function x to obtain smoother meshes. One of the reasons for using smoothing technique is to avoid very

singular meshes and large approximation error around the stiff solution areas. In this work, we apply the

following low pass filter to smooth the monitor

xjþ1
2
 1

4
ðxjþ3

2
þ 2xjþ1

2
þ xj
1

2
Þ; ð2:21Þ

where xjþ1
2
¼ xð/jþ1

2
Þ.

An 2D version of the above GS iteration formula is given by

piþ1
2
;j r

½m�
iþ1;j

�

 r½mþ1�i;j

�

 pi
1

2
;j r

½mþ1�
i;j

�

 r½mþ1�i
1;j

�
þ qi;jþ1

2
r
½m�
i;jþ1

�

 r½mþ1�i;j

�

 qi;j
1

2
r
½mþ1�
i;j

�

 r½mþ1�i;j
1

�
¼ 0; ð2:22Þ

for 16 i6Nn and 16 j6Ng, where r :¼ ðx; yÞ,

pi�1
2
;j ¼ x /½m�

i�1
2
;j

� �
¼ x

1

2
ð/½m�i�1;j

�
þ /½m�i;jÞ

�
;

qi;j�1
2
¼ x /½m�

i;j�1
2

� �
¼ x

1

2
ð/½m�i;j�1

�
þ /½m�i;jÞ

�
:

An 3D version can be similarly obtained and it will be omitted here to save space.

2.2.2. A non-conservative interpolation

After obtaining the new grid fexxjg, we will update / at the grid point exxj based on the information of /j.
The traditional way to do it is using the standard interpolation

e//j ¼ /k þ
/k 
 /k
1
xk 
 xk
1

ðexxj 
 xkÞ; if exxj 2 ½xk
1; xk�: ð2:23Þ

In solving the H–J equations with strong derivative discontinuities, the iteration techniques based on

(2.19)–(2.23) produce poor numerical approximations, mainly due to the use of the linear interpolation

(2.23) which introduces large dissipation at each iteration step. An efficient method to replace (2.23) will be

outlined below. If the function is reasonably smooth, then using Taylor expansion gives

/ðexxjÞ � /ðxjÞ þ
o/
ox

� �
x¼xj
ðexxj 
 xjÞ ¼ /ðxjÞ 
 cj

o/
on

� �
j

; ð2:24Þ

where

cj :¼ ðxj 
 exxjÞðnxÞj: ð2:25Þ

Eq. (2.24) can be regarded as a numerical approximation of linear convective equation on the compu-
tational domain with wave speed cj. Eq. (2.24) can be also regarded as the following Hamilton–Jacobi type
equation

e// ¼ /
 c/n; ð2:26Þ
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where c is defined by (2.25). The above equation is of the same form of (2.2) with a linear Hamiltonian. The

second-order method described in Section 2.1 will be adopted directly here to solve (2.26).

Remark.
• The interpolation formula given by (2.24) is

~//j ¼ /j 
 cjð/nÞj: ð2:27Þ

Let vjþ1
2
be the cell average of /x as defined by (2.6). Then it can be easily verified that the above in-

terpolation formula preserves the mass for v in the following sense:X
j

D~xxjþ1
2
~vvjþ1

2
¼
X

Dxjþ1
2
vjþ1

2
:

• As demonstrated in Tang and Tang [33], the mesh moving speed c can be made of order OðDnÞ. As a
result, it follows that the error of the interpolation formula (2.27) is of order OðDn2Þ.

The interpolation formula in 2D is

/ðexxi;j; eyyi;jÞ � /ðxi;j; yi;jÞ þ ð/xÞi;jðexxi;j 
 xi;jÞ þ ð/yÞi;jðeyyi;j 
 yi;jÞ ¼ /ðxi;j; yi;jÞ 
 ðcnÞi;jð/nÞi;j 
 ðcgÞi;jð/gÞi;j;

where cn ¼ ðr
 ~rrÞ � rn and cg ¼ ðr
 ~rrÞ � rg. Here r ¼ ðx; yÞ and r ¼ ðox; oyÞT. In 3D, the interpolation
formula is

/ðerri;j;kÞ � /ðri;j;kÞ þ r/ � ðr
 ~rrÞ ¼ /i;j;k 
 ðcnÞi;j;kð/nÞi;j;k 
 ðcgÞi;j;kð/gÞi;j;k 
 ðcfÞi;j;kð/fÞi;j;k;

where r ¼ ðox; oy ; ozÞT, r ¼ ðx; y; zÞ, cn ¼ ðr
 ~rrÞ � rn, cg ¼ ðr
 ~rrÞ � rg and cf ¼ ðr
 ~rrÞ � rf:

2.3. Summary of the AMR algorithm

An overview of the sequence of computations described in the last two subsections is given below.

Algorithm 2 (Outline of the numerical algorithm).
0. Determine the initial mesh based on the initial function.

1. Determine Dt based on CFL-type condition so that tn ¼ tn
1 þ Dt.
2. Advance the solution one time step based on an appropriate numerical scheme for the given H–J equa-

tion.

3. Grid Restructuring

(a) Solve the mesh redistributing equation (a generalized Laplace equation with given data for the mon-

itor) by one cycle of Gauss–Seidal iteration, to get x½k�;n, e.g. (2.20) for 1D.

(b) Interpolating the approximate solutions on the new grid x½k�;n, e.g. (2.26) for 1D.
(c) A weighted average of the locally calculated monitor at each computational cell and the surrounding

monitor values, see (2.21).

(d) The iteration procedure (a)–(c) on grid motion and solution-interpolation is continued until there is

no significant change in calculated new grids from one iteration to the next. In practice, a fixed num-

ber of iterations may be also used for the procedure (a)–(c).

4. Start new time step (go to 1 above).

The Algorithm 2 will be used to solve some test problems in 1D, 2D and 3D in the following

sections.
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3. Numerical experiments in 1D

In this section, we apply our adaptive mesh redistribution method to two 1D problems which can be

found in [13,27]. The CFL number used in the 1D experiments is 0.48. The main purpose of the 1D ex-

periments are twofolds: one is to discuss the choice of the monitor function and another is to discuss the

convergence rate.

Example 3.1. We solve

/t þ Hð/xÞ ¼ 0; /ðx; 0Þ ¼ 
 cosðpðx
 x0ÞÞ; 
16 x < 1; ð3:1Þ

with a convex H (Burgers� equation),

HðuÞ ¼ 1

2
ðuþ 1Þ2: ð3:2Þ

The periodic boundary condition is used.

In this example, x0 is chosen as 0.85. We first wish to verify the convergence rate for the moving mesh

algorithm. It is easily seen that the numerical scheme described in Section 2 is of second-order rate of
convergence in uniform mesh (when the underlying solution is smooth). It is natural to ask if the second-

order rate of convergence can be preserved if an adaptive grid method is employed? To see this, we solve

Example 3.1 up to t ¼ 0:5=p2 (when the solution is still smooth) with our moving mesh algorithm, where the
number of Gauss–Seidal iteration for the grid motion at each time level is taken as 5. In our numerical

experiments, the monitor function is taken as

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aj/xj

2 þ b
/x

maxfj/xjg

� �
x

���� ����2
s

: ð3:3Þ

There is a connection between the above monitor and the gradient-based monitor for the hyperbolic

conservation laws used in [33]. By the well-known relation that u � /x, it is natural to choose (3.3) as

the monitor function for the one-dimensional H–J equation. In this section, the derivatives appeared in

the monitor function are all approximated numerically by central differencing such as

/x �
1

2

Dþx /j

Dþx xj

�
þ

D
x /j

D
x xj

�
:

The L1 and L1 errors are defined byX
j

j/exaðxjþ1=2Þ 
 /num
jþ1=2jðxjþ1 
 xjÞ; max

j
fj/exaðxjÞ 
 /num

j jg;

respectively, where /exa denotes the exact solution and /num the correspondingly numerical solution. The L1

and L1 errors and convergence orders obtained by using different constants in (3.3) are listed in Tables

1(a)–(d). A second-order rate of convergence is observed for the uniform mesh solution and the adaptive

mesh solutions with some constants a and b. However, it is seen from Tables 1(c) and (d) that the rate of

convergence for the adaptive mesh scheme are quite erratic. It is known that the convergence rate of the

finite volume method depends on the ratio of area of neighboring control volume, i.e.

ðxjþ1 
 xjÞ=ðxj 
 xj
1Þ, see e.g. [10]. Ideally, this ratio for our moving meshes is finite when the PDE solution

is smooth. However, since the Gauss–Seidal iteration is used (i.e., we do not solve the resulting mesh
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Eq. (2.19) exactly), the �regularity� of the ratio may be affected slightly, which may be the main reason

responsible for the erratic rate observed.

It is seen from Tables 1(a)–(d) that in general the second-order rate of convergence is preserved when the

solution is smooth. However, when solution singularity is developed the convergence rate should be re-
duced and the expected L1-rate should be lower than 2. To see this, we display the solution errors and the
corresponding convergence rates in Tables 2(a)–(d) at t ¼ 0:99=p2 when the derivative singularity is almost
developed. It is seen from Tables 2(a)–(d) that the L1-rate for the AMR solution is very erratic, since the

large values of /xx in the monitor function yield (highly) non-quasi uniform meshes. Moreover, the (av-

erage) rate of convergence in both L1 and L1 is about 2 for the AMR solution. The rate also depends on the

choice of the parameters a and b in the monitor function.

In Fig. 1 the adaptive solution / and its gradient /x obtained by using 41 grid points are presented. For

comparison, the numerical solution on a uniform mesh (with the same number of grid points) is included in
Fig. 1. To further demonstrate the improvement with the use of the adaptive mesh, another comparison

between the uniform mesh solution and the adaptive mesh solution at t ¼ 7:2=p2 is given in Fig. 2. In both
cases, higher resolution of the adaptive-mesh solutions over the uniform mesh ones is clearly observed.

Example 3.2. The second 1D example is the following Riemann problem with a non-convex flux:

/t þ 1
4
ð/2

x 
 1Þð/
2
x 
 4Þ ¼ 0; 
1 < x < 1;

/ðx; 0Þ ¼ 
2jxj:

�
ð3:4Þ

Table 1

Example 3.1: the errors and the rate of convergence of the moving mesh solution at t ¼ 0:5=p2, obtained by using the monitor function
(3.3) with: (a) ða;bÞ ¼ ð0; 0Þ, i.e., uniform mesh; (b) ða;bÞ ¼ ð0; 50
1Þ; (c) ða;bÞ ¼ ð1; 16
1Þ and (d) ða; bÞ ¼ ð1; 8
1Þ

N L1-error L1-order L1-error L1-order

(a)

20 2.61e) 02 – 2.14e) 02 –

40 5.09e) 03 2.34 4.42e) 03 2.28

80 1.12e) 03 2.18 9.81e) 04 2.17

160 2.59e) 04 2.11 2.20e) 04 2.16

320 6.20e) 05 2.06 4.97e) 05 2.15

(b)

20 2.40e) 02 – 2.05e) 02 –

40 4.57e) 03 2.39 4.14e) 03 2.31

80 9.88e) 04 2.21 8.85e) 04 2.23

160 2.20e) 04 2.17 1.94e) 04 2.19

320 5.43e) 05 2.02 4.50e) 05 2.11

(c)

20 2.70e) 02 – 1.96e) 02 –

40 6.10e) 03 2.15 4.71e) 03 2.06

80 1.72e) 03 1.83 1.28e) 03 1.88

160 5.24e) 04 1.71 3.55e) 04 1.85

320 1.27e) 04 2.04 8.35e) 05 2.09

(d)

20 2.53e) 02 – 1.89e) 02 –

40 5.44e) 03 2.22 4.27e) 03 2.15

80 1.42e) 03 1.94 1.07e) 03 2.00

160 3.77e) 04 1.91 2.81e) 04 1.93

320 8.45e) 05 2.16 6.27e) 05 2.16
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As pointed out by Zhang and Shu [37] that this is a demanding test case. Many schemes have poor res-

olutions or could not even converge to a non-viscosity solution for this case. Numerical results at t ¼ 1 with

41 grid points are shown in Fig. 3, and are compared with the exact solution (solid lines). In this example,

the monitor function is again taken as (3.3). It is found that the AMR algorithm with 41 grid points gives
satisfactory numerical approximations, which seem more accurate than the third-order and fifth-order

WENO solutions with 81 non-uniform grid points [37], and also more accurate than the high-resolution

central scheme solution with 81 uniform grid points [17]. For comparison, the uniform mesh solution is also

included in Fig. 3. The improvement of the AMR solution is then clearly demonstrated by comparing the

adaptive mesh solutions and the uniform mesh solution.

4. Numerical experiments in 2D

We consider four test problems in this section. The first two are of smooth initial data, while the last two

have discontinuous initial conditions. In fact, the last example in this section is a level-set equation which is

concerned with a geometric motion. In all the 2D computations, we took five cycles of the Gauss–Seidal

iterations in the mesh redistribution part. The CFL number is chosen as 0.24.

Our 2D monitor function is a direct extension of (3.3). It is chosen as xI , with I the identity matrix and

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ajrp/j2 þ b rp �

rp/
maxfjrp/jg

� ����� ����2
s

; ð4:1Þ

Table 2

Example 3.1: Same as Tables 1(a)–(d), except t ¼ 0:99=p2

N L1-error L1-order L1-error L1-order

(a)

20 4.92e) 02 – 5.17e) 02 –

40 1.57e) 02 1.65 2.01e) 02 1.36

80 4.83e) 03 1.70 8.46e) 03 1.25

160 1.60e) 03 1.59 3.72e) 03 1.19

320 7.57e) 04 1.08 1.50e) 03 1.31

(b)

20 1.63e) 01 – 9.67e) 02 –

40 2.93e) 02 2.78 1.81e) 02 2.42

80 5.10e) 03 2.52 3.38e) 03 2.42

160 8.48e) 04 2.59 6.07e) 04 2.48

320 1.78e) 04 2.25 1.27e) 04 2.26

(c)

20 1.67e) 01 – 9.42e) 02 –

40 2.72e) 02 2.62 1.68e) 02 2.49

80 1.41e) 03 4.27 4.22e) 03 1.99

160 3.53e) 04 2.00 6.21e) 04 2.76

320 7.23e) 05 2.29 1.93e) 04 1.69

(d)

20 3.72e) 02 – 4.73e) 02 –

40 2.30e) 03 4.02 1.20e) 02 1.98

80 1.65e) 03 0.48 1.51e) 03 2.99

160 3.59e) 04 2.20 4.33e) 04 1.80

320 8.55e) 05 2.07 1.16e) 04 1.90
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Fig. 1. Example 3.1: the adaptive mesh solutions (�) and the exact solution (solid line) for / (left) and /x (right) with 40 grid points.

T ¼ 1:5=p2. Monitor function (3.3) is used with: (a) ða;bÞ ¼ ð1; 16
1Þ, (b) ða;bÞ ¼ ð0; 50
1Þ, and (c) ða;bÞ ¼ ð0; 0Þ, i.e., uniform mesh.
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Fig. 2. Example 3.1: the adaptive mesh solutions (�) and the exact solution (solid line) for / (left) and /x (right) with 40 grid points.

T ¼ 7:2=p2. Monitor function (3.3) is used with: (a) ða;bÞ ¼ ð1; 16
1Þ, (b) ða;bÞ ¼ ð0; 50
1Þ, and (c) ða;bÞ ¼ ð0; 0Þ, i.e., uniform mesh.
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Fig. 3. Example 3.2: numerical solutions (�) and the exact solution (solid line) at t ¼ 1 with monitor (3.3): (a) ða;bÞ ¼ ð6; 0:5Þ, (b)
ða; bÞ ¼ ð6; 0:25Þ, (c) ða;bÞ ¼ ð6; 0:125Þ, (d) ða; bÞ ¼ ð1; 0:25Þ, (e) ða;bÞ ¼ ð1; 0:125Þ, and (f) ða; bÞ ¼ ð0; 0Þ, i.e., uniform mesh. 41 grid

points are used.
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where rp ¼ ðox; oyÞT, maxfjrp/jg (a function of time t) is a scaling factor. With the use of this scaling

factor, the coefficient of the high-order derivative term, b, can be chosen as an Oð1Þ constant.

Example 4.1. Two-dimensional Burgers equation

/t þ Hð/x;/yÞ ¼ 0; ðx; yÞ 2 ð
2; 2Þ2;
/ðx; y; 0Þ ¼ 
 cosðpðxþ yÞ=2Þ;

�
ð4:2Þ

with a strictly convex Hamiltonian H :

Hðu; vÞ ¼ 1

2
ðuþ vþ 1Þ2; ð4:3Þ

Fig. 4. The convex Hamiltonian (4.3) for Example 4.1: the adaptive mesh (left) and numerical approximation (right) at t ¼ 1:5=p2,
using the monitor (4.1) and ða; bÞ ¼ ð1; 5Þ: (a) 302 grid points; (b) 602 grid points.
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and a non-convex Hamiltonian H :

Hðu; vÞ ¼ 
 cosðuþ vþ 1Þ: ð4:4Þ

The periodic boundary condition is used.

This problem was proposed in [27] and is now a standard test problem. In Fig. 4, the adaptive mesh and

numerical solutions at t ¼ 1:5=p2 for the convex Hamiltonian (4.3) are presented, and those for the non-
convex Hamiltonian (4.4) are plotted in Fig. 5. In both cases, the monitor function x is of form (4.1) with

ða; bÞ ¼ ð1; 5Þ. It is seen from Figs. 4 and 5 that satisfactory effects of the mesh adaptation are obtained.

Fig. 5. The non-convex Hamiltonian (4.4) for Example 4.1: the adaptive mesh (left) and numerical approximation (right) at t ¼ 1:5=p2,
by using the monitor (4.1) with ða;bÞ ¼ ð1; 5Þ: (a) 302 grid points, (b) 602 grid points.
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It is natural to ask what will be happened if the constant a in (4.1) is set to zero. In Fig. 6, the adaptive
mesh and numerical solutions at t ¼ 1:5=p2 for the non-convex Hamiltonian (4.4) are plotted, where

ða; bÞ ¼ ð0; 5Þ is used. It is observed that similar results to those presented in Fig. 5 are obtained. However,
a monitor with non-zero a is useful in enhancing stability, as shown in Table 3 for the next example.

Example 4.2. The second 2D problem is a prototype model in geometrical optics [16,24,26], which is a

Cauchy problem for an 2D H–J equation with a non-convex Hamiltonian and a periodic boundary con-

dition

/t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x þ /2
y þ 1

q
¼ 0; ðx; yÞ 2 ð0; 1Þ2;

/ðx; y; 0Þ ¼ 0:25ðcosð2pxÞ 
 1Þðcosð2pyÞ 
 1Þ 
 1:

(
ð4:5Þ

Fig. 6. Same as Fig. 5, except with ða;bÞ ¼ ð0; 5Þ.
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For this example, the monitor function is of the form (4.1) with ða; bÞ ¼ ð6; 0:1Þ. Using our moving mesh
algorithm, we record data at t ¼ 0:6 (after singularity) with 302 and 602 grids. In Fig. 7, the adaptive mesh
and the approximation solutions are presented. It is seen that the problem is well resolved with 302 grid

Table 3

Example 4.2: efficiency vs. effectiveness with different monitor functions

ða; bÞ No. of time evolution (302 grids) No. of time evolution (602 grids) Quality of mesh adaptation

ð6; 0:1Þ 252 650 Very good

ð6; 0Þ 206 344 Satisfactory

ð1; 0Þ 152 282 Poor

ð0; 0:1Þ 219 Very large –

Fig. 7. Example 4.2: moving mesh (left) and its solution (right) with: (a) 302 and (b) 602 (bottom) grid points. Monitor function used is

(4.1), with ða; bÞ ¼ ð6; 0:1Þ. T ¼ 0:6.
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The time dependency gðtÞ is given by gðtÞ ¼ cosðpt=T0Þ. Initially a discontinuity is placed at x ¼ 0:5:

/ðx; y; 0Þ ¼ 1; x6 0:5;
0; x > 0:5:

�
ð4:7Þ

Due to the velocity dependency, the flow reverses at t ¼ ð1=2ÞT0, and the initial discontinuity should be
recovered at t ¼ T0. In the present computation, T0 is chosen as 0.8. Since the initial condition (4.7) is

discontinuous, it is reasonable to believe that the gradient-based monitor function should be employed. The

idea is similar to that for the shock problems, see e.g. [3,33]. The monitor function is taken as xI with

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrp/j2

q
: ð4:8Þ

The numerical results with 402 grid points are shown in Fig. 10. This problem was proposed by LeVeque

[20]. The solution of this problem reverses direction in such a way that the initial data should be recovered

Fig. 9. Same as Fig. 7, except that ða;bÞ ¼ ð6; 0Þ.
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at time T0: /ðx; y; T0Þ ¼ /ðx; y; 0Þ. This gives a very useful test problem since the true solution at time T0 is
known even thought the flow field has a quite complicated structure. Our numerical results show that the

initial shapes have been recovered fairly well at t ¼ T0, and that the AMR scheme adapts the mesh very well

to the regions with large solution gradients. Of course, the smearing introduced during the deformation will

not be eliminated as the flow inverses, and so the resolution seen here seems quite good.

To demonstrate the ability of our moving mesh strategy, we will consider a geometric-motion problem

investigated by Barth and Sethian [4]. The problem is about the motion of a simple closed curve which is the

boundary of an ‘‘H’’ shape, as plotted in the top right of Fig. 11.

Example 4.4. The governing equation is a level-set equation

/t 
 jjr/j ¼ 0; ðx; yÞ 2 ð0; 1Þ2; ð4:9Þ

Fig. 10. Example 4.3: moving mesh (left) and its solution (right) with 402 grid points at: (a) t ¼ T0=2 and (b) t ¼ T0.
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Fig. 11. Example 4.4: adaptive mesh and numerical solution with 802 grid points, at: (a) t ¼ 0, (b) 10
3, (c) 3� 10
3, (d) 5� 10
3,
(e) 10
2 and (f) 1:4� 10
2.
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Fig. 11. (continued )
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where j is the curvature of /, defined by j ¼ rp � rp/=jrp/j, and the initial data are given by

/ðx; y; 0Þ ¼
1; ðx; yÞ 2 H;

1; ðx; yÞ 2 Xp=H;
0; otherwise:

8<:
This is an example of curvature driven movement of an interface. The zero level set of / defines the

interface. We wish to numerically simulate the geometric motion by solving the above level-set equation

collapsing with speed proportional to local curvature. Grayson [11] proved that all simple closed curves

moving with curvature will eventually collapse to a round point. This example serves as a challenging test

problem to verify Grayson�s theory.
We briefly discuss how to discretize the curvature j which involves second derivatives of /. In our al-

gorithms, central-differencing is used to discretize the derivatives involved in the curvature. Namely, they

are all approximated by second-order central difference approximations in the computational domain. For

example,

/x ¼
1

J
ð/nyg 
 /gynÞ

is approximated by

ð/xÞj;k �
1

Jj;k

/jþ1;k 
 /j
1;k

2Dn
yj;kþ1 
 yj;k
1

2Dg

�



/j;kþ1 
 /j;k
1

2Dg
yjþ1;k 
 yj
1;k

2Dn

�
;

where J ¼ xn � yg 
 xg � yx, whose derivatives are approximated again by central differencing.
It is suggested in Sethian�s book [29] that for curvature driven flow the discretization should be of central

difference type as the equation is parabolic. It can be shown that if the scheme (2.11) is used, together with a

central-differencing approach to the curvature which involves higher-order derivatives, then the overall

scheme is indeed of central difference type.

Since the initial function is discontinuous, we again choose the gradient-based monitor function (4.8) in

our AMR algorithm. Numerical results obtained by using 402 grid points are shown in Fig. 11, which

indicate that more grid points are moved into the regions of physical significance. As desired, adaptive mesh

is also part of the numerical solution: the areas with dense points also give rough shape of the moving
curve. For this simple example, we demonstrated numerically that Grayson�s theory on the motion of

simple closed curves holds.

5. Numerical experiments in 3D

A challenging task for a useful adaptive mesh redistribution method is its feasibility for 3D com-

putations, since 3D mesh adaptation is much more complicated than that of 1D or 2D. In 2D, it is
demonstrated in the last section that our AMR algorithm adapts the mesh extremely well to the so-

lution without producing skew volumes. In this section, we wish to demonstrate that this is also true in

3D. The last example in this work is concerned with an 3D advection problem. The CFL number used

is 0.12.

Example 5.1. The last example is the same as Example 4.3, except that the solution domain becomes

X ¼ ð
1; 1Þ3. More precisely, this problem is concerned with a scalar advection equation

/t þ u/x þ v/y þ w/z ¼ 0; ðx; y; zÞ 2 ð
1; 1Þ3; ð5:1Þ
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Fig. 12. Numerical solution and the corresponding mesh at t ¼ T0=2 (top) and t ¼ T0 (bottom), on the cut-plane y þ z ¼ 1.
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Fig. 13. Same as Fig. 12, except on the cut-plane z ¼ 0:5.
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where the velocity field corresponds to a swirling deformation flow of the form

uðx; y; z; tÞ ¼ 2 sin2ðpxÞ sinð2pyÞ sinð2pzÞgðtÞ;

vðx; y; z; tÞ ¼ 
 sinð2pxÞ sin2ðpyÞ sinð2pzÞgðtÞ;

wðx; y; z; tÞ ¼ 
 sinð2pxÞ sinð2pyÞ sin2ðpzÞgðtÞ:

The time dependency gðtÞ is the same as that defined in Example 4.3. The initial condition is

/ðx; y; z; 0Þ ¼ 1; x6 0:5;
0; x > 0:5:

�
ð5:2Þ

As in 2D, the flow reverses at t ¼ ð1=2ÞT0, and the initial discontinuity is recovered at t ¼ T0. This
problem was proposed and solved by LeVeque [20]. Again, due to the discontinuity for the solution /, the

gradient-based function x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jrp/j2

r
is used. In the present computation, we take T0 ¼ 0:8, and 403 grid

points are used. Figs. 12 and 13 present the adaptive mesh solutions at two different time levels,

t ¼ 0:4 ¼ T0=2 and t ¼ 0:8 ¼ T0. It is observed that our AMR scheme adapts the mesh extremely well to the
regions with large solution gradients. Unlike on the structured mesh, an arbitrary cut-plane may not have

enough grid points from the adaptive meshes. To handle this problem, the nearby points are projected into

the chosen plane. As observed in Figs. 12 and 13, the projection may yield a few spurious volumes, due to
the complicated structure of the 3D grids.

6. Concluding remarks

One of efficient ways to increase the resolution for the numerical approximations of the Hamilton–Ja-

cobi equations is to use higher-order numerical discretization, such as the high-order ENO scheme of Osher

and Shu [27], high-resolution central schemes of Kurganov and Tadmor [18], and high-order discontinuous

Galerkin finite element method of Cockburn and Shu [7] and Hu and Shu [12]. In this work, we have

demonstrated that adaptive mesh redistribution method can also increase the solution resolution, so that

accurate numerical solutions can be obtained by using relatively small number of grid points.

The main contributions of this work are twofolds. First, we describe a simple numerical scheme which

consists of a second-order finite volume scheme and a novel AMR strategy. Second, selection of the
monitor functions is investigated. It is concluded that if the numerical solution is continuous but the de-

rivatives are discontinuous (in the generic case, H–J solutions form discontinuous derivatives in a finite time

even with smooth initial conditions) then a monitor function involving a curvature-like term is desired.

However, if the solution has initial discontinuity, then a gradient-based monitor is sufficient.

A number of numerical experiments have been carried out, including 2D and 3D convection problems

and a level-set problem. The numerical computations indicate that the adaptive mesh algorithm described

in this work can cluster grid points into the regions of the physical domain where the solution has sin-

gularity behaviors, and as a result high resolution of the numerical approximation can be achieved with
relatively small number of grid points.
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